Sehr geehrte Damen und Herren, Liebe Kolleginnen und Kollegen,
zum nächstmöglichen Zeitpunkt suchen wir an der Fakultät für Soziologie, Universität Bielefeld eine/n Wissenschaftliche*n Mitarbeiter*in (m/w/d, TV-L 13, 100%, 3 Jahre) im Bereich Quantitative Methoden.
Die Stelle soll bei der Entwicklung eines Digitalisierungskonzepts für die Methodenausbildung mitarbeiten, Lehre im Umfang von 4 SWS in den Quantitativen Methoden und Sozialstrukturanalyse anbieten und sich in gemeinsamen Forschungsschwerpunkten der Quantitativen Methoden an der Fakultät für Soziologie engagieren.
Mehr Informationen zur Stelle finden Sie in der PDF im Anhang bzw. unter https://www.uni-bielefeld.de/Universitaet/Aktuelles/Stellenausschreibungen/…
Bewerbungsfrist ist der 04.03.2020.
Wir danken für die Weiterleitung der Ausschreibung an geeignete Personen.
Mit freundlichen Grüßen
Simon Kühne
--
Dr. Simon Kühne
Akademischer Rat - Universität Bielefeld
AG Methoden der empirischen Sozialforschung
Prof. Dr. Martin Kroh
Raum B3-201, Gebäude X, Universitätsstraße 25
Tel.: +49 521 106 4681
E-Mail: simon.kuehne(a)uni-bielefeld.de<mailto:simon.kuehne@uni-bielefeld.de>
We’re excited to launch the 3rd annual Women in Data Science Mannheim
conference on March 4, 2020 in cooperation with SAP Next-Gen and
Stanford University!
We will unite local Data Science industry and academic leaders, as well
as students and post-doc researchers for an exceptional one-day
technical conference.
The Women in Data Science conference aims to inspire and educate data
scientists worldwide, regardless of gender, and support women in the
field. This annual conference is held at Stanford University and 150+
locations worldwide.
We’re proud to announce this amazing speaker line-up:
* Julia Krönung, Professor of Information Systems, EBS Business School
* Katrin Lehmann, Senior Vice President S/4HANA Cloud Data Management, SAP
* Iris Heckmann, Principal, Camelot ITLab
* Cosima Meyer, PhD candidate, Graduate School of Economics and Social
Sciences & research associate, Chair of Political Science,
International Relations, University of Mannheim
* Simona Marincei, Head of Intelligent Processes – SME Product
Management, SAP
* Tatjana Schröder, AI Manager, trans-o-flex & Master Student,
International Program in Survey and Data Science, University of Mannheim
When? March 4, 2020, 3-7.30 pm
Where? SAP Experience Room Walldorf, Building 49, Dietmar-Hopp-Allee 17,
69190 Walldorf
Join us, share your experience and learn about cutting edge data
science-related innovation and impact! Register now:
https://events.sap.com/de/wids-2020-walldorf/en/home
--
Florian Keusch
Professor of Statistics and Methodology (interim)
University of Mannheim
A5, 6
Room B218, 2nd floor
68159 Mannheim, Germany
+49 (0)621 - 181 3214
f.keusch(a)uni-mannheim.de
floriankeusch.weebly.com
***Apologies for cross-posting
Dear colleagues,
I am happy to announce the new issue of the open-access journal
"methods, data, analyses (mda)", which is edited by Melanie Revilla:
https://mda.gesis.org/index.php/mda
mda publishes research on all questions important to quantitative
methods, with a special emphasis on survey methodology. mda is released
online as open-access journal. All content is freely available and can
be distributed without any restrictions, ensuring the free flow of
information that is crucial for scientific progress. Of course, mda does
not raise any publication fees and welcomes submissions from all over
the world.
mda is indexed and abstracted in the Emerging Sources Citation Index.
mda is also listed in the Directory of Open Access Journals and SCOPUS.
Best regards
Jan Karem Höhne (associate editor)
--
Jan Karem Höhne
Postdoctoral Researcher
University of Mannheim
B6, 30-32 (Room: 346)
68131 Mannheim, Germany
+49 (0)621/181-3483
hoehne(a)uni-mannheim.de
━━━━━━━━━━━━━━━━━━━━━━━━━
GRAPHICAL CAUSAL MODELS
━━━━━━━━━━━━━━━━━━━━━━━━━
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Datum 6. März 2020, 14:00–18:00
7. März 2020, 9:00–12:30
Ort Universität Potsdam
Campus Griebnitzsee
August-Bebel-Straße 89
14482 Potsdam
Raum Gebäude 6
Raum S21
Workshop 6. März 2020, 12:00–14:00
Universität Potsdam
Campus Griebnitzsee
Gebäude 6
Raum S21
Anmeldung bis 24.2.2020 auf
[https://terminplaner4.dfn.de/C6UtOk2q6F1Lcbg9]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Die Sektion [Methoden der empirischen Sozialforschung] der [Deutschen Gesellschaft für Soziolgie] läd alle Kolleginnen und Kollegen aus der Soziolgie und den angrenzenden Fächern zu ihrer Frühjahrstagung zum Thema
*Graphical Causal Models*
ein. Aus Anlass der Frühjahrstagung veranstaltet das [Potsdam Center for Quantiative Research] gemeinsam mit der Methodensektion den einführenden Workshop
*Causal Graphs Basics*
von [Julian Schüssler] (Universität Konstanz). Eine genauere Beschreibung des Workshops finden Sie am Ende der Kurzzusammenfassungen.
[Methoden der empirischen Sozialforschung] https://dgs-methoden.uni-konstanz.de/
[Deutschen Gesellschaft für Soziolgie] https://soziologie.de/aktuell
[Potsdam Center for Quantiative Research] https://www.uni-potsdam.de/pcqr
[Julian Schüssler]
https://www.polver.uni-konstanz.de/cdm/people/students/schuessler/
Freitag 6. März 2020
════════════════════
Workshop
────────
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
12:00–14:00 Causal Graphs Basics
Workshop
von Julian Schüssler
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Tagung
──────
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
13:30 –14:00 Registrierung (/Kaffee/)
────────────────────────────────────────────────────────────────────────────────────────
14:00–14:10 Willkommen
14:10–14:50 Kausale Mediationsanalyse mit Directed Acyclic Graphs*
Michael Kühhirt
14:50–15:30 Does positive affect mediate the effect of
multimorbidity on depression?
Ibrahim Demirer
────────────────────────────────────────────────────────────────────────────────────────
15:30–16:00 /Kaffee, Kuchen/
────────────────────────────────────────────────────────────────────────────────────────
16:00–16:40 Defining and Identifying Discrimination Using DAGs*
Sebastian Wenz
16:40–17:20 Bringing Research Design Back In*
Fabian Class/Ulrich Kohler/Tim Sawert
17:20-18:00 The Art of Programming Questionnaires*
Claudia Saalbach
────────────────────────────────────────────────────────────────────────────────────────
18:00–20:00 Mitgliederversammlung
────────────────────────────────────────────────────────────────────────────────────────
20:00 Gemeinsames Abendessen
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Samstag 7. März 2020
════════════════════
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
9:00–10:00 External Validity and Transportability*
Julian Schüssler
10:00–10:40 Multilevel Analysis with Few Clusters*
Jan Paul Heisig
───────────────────────────────────────────────────────────────────────────────────────────────────────────
10:40–11:10 /Kaffee, Gebäck/
───────────────────────────────────────────────────────────────────────────────────────────────────────────
11:10–11:50 Graph Theory and Macroeconomic Regimes
Miguel Carrión Álvarez/Dirk Ehnts
11:50–12:30 Analyse ökonomischer Selektivität im politischen Engagement unter Anwendung von RMC und DAGs
Juliana Witkowski/Simon Ress
───────────────────────────────────────────────────────────────────────────────────────────────────────────
12:30 Ende der Tagung
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Anmeldung
═════════
Um Anmeldung unter [https://terminplaner4.dfn.de/C6UtOk2q6F1Lcbg9]
wird gebeten.
Anreise
═══════
Der Campus Griebnitzsee der Universität Potsdam liegt unmittelbar am
S- und Regionalbahnhof Griebnitzsee. Der Bahnhof ist im
10-Mintuten-Takt mit der S-Bahn-Linie 7 von Potsdam-Hauptbahnhof
bzw. Berlin-City (Charlottenburg, Savigny-Platz, Zoologischer Garten,
Hauptbahnhof, Friedrichstraße, etc.) sowie mit der Regionalbahn RB 21
zu erreichen.
Der Bahnhof Griebnitzsee gehört zum Berliner Tarifbereich C. Bei
Anfahrt aus Berlin ist ein Ticket für /ABC/ zu
lösen. DB-City-Fahrscheine für Berlin haben keine Gültigkeit.
• [Fahrinfo der BVG]
• [OSM-Karte]
• [Lageplan Campus Griebnitzsee]
[Fahrinfo der BVG] https://www.bvg.de/de/Willkommen
[OSM-Karte]
https://www.openstreetmap.de/karte.html?zoom=17&lat=52.39332&lon=13.12927&l…
[Lageplan Campus Griebnitzsee]
https://www.uni-potsdam.de/db/zeik-portal/gm/lageplan-up.php?komplex=3
Unterkünfte
═══════════
Die Teilnehmer werden gebeten, sich selbst um Unterkünfte zu
bemühen. Neben dem unmittelbar in der Nachbarschaft des
Universitätscampus gelegenen Seminaris Avendi Hotels (s.u.) bieten
sich Hotels in der Umgebung von S-Bahnhöfen entlang der S7
an. Nachfolgend einige Vorschläge (Fahrtzeit in Klammern)
• Fußläufig
• [Seminaris Avendi Hotel Potsdam]
• Bereich Potsdam Hbf. (6 min)
• [Mercure Hotel Potsdam City]
• S-Bahn Charlottenburg (20 min)
• [ART-Hotel Charlottenburger Hof ]
• [HappyGoLucky Hotel]
• [City Pension Berlin]
• S-Bahn Zoologischer Garten (24 min)
• [Hotel Motel One]
• [Aletto Hotel Kudamm]
[Seminaris Avendi Hotel Potsdam]
https://www.seminaris.de/hotels/potsdam/seminaris-avendi-hotel-potsdam
[Mercure Hotel Potsdam City] https://www.mercure-potsdam.com/
[ART-Hotel Charlottenburger Hof ] https://charlottenburger-hof.de/
[HappyGoLucky Hotel] http://www.happygoluckyhotel.com/
[City Pension Berlin] https://www.city-pension.de/
[Hotel Motel One]
https://www.motel-one.com/de/hotels/berlin/hotel-berlin-upper-west/
[Aletto Hotel Kudamm] https://www.aletto.de/de/
Kurzzusammenfassungen
═════════════════════
Kausale Mediationsanalyse mit Directed Acyclic Graphs ─────────────────────────────────────────────────────
Referent
╌╌╌╌╌╌╌╌
• Michael Kühhirt, Universität zu Köln, Institut für Soziologie und
Sozialpsychologie
Zusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
Die Untersuchung von Kausalzusammenhängen geht häufig einher mit der
Frage nach den diesen Zusammenhängen zugrundeliegenden Prozessen und
Mechanismen. Ein zentraler Aspekt dieser Frage ist, ob und zu welchem
Maße der Effekt einer Variablen über eine oder mehrere weitere
Variablen (i.e., potentielle Mediatoren) vermittelt wird. In der
Praxis wird diese Frage häufig anhand von Veränderungen in
Regressionskoeffizienten nach zusätzlicher Kontrolle der potentiellen
Mechanismen untersucht. Die neuere Literatur zu kausaler Inferenz
zeigt jedoch, dass dieser Ansatz mit Annahmen behaftet ist, die in der
angewandten Forschung nur selten thematisiert und damit auch häufig
keiner Plausibilitätsprüfung unterzogen werden. Am Beispiel des
Effekts der sozialen Herkunft auf den Arbeitsmarkterfolg nutzt dieser
Beitrag Directed Acyclic Graphs und die kontrafaktische Definition
direkter und indirekter Kausaleffekte, um die Bedingungen transparent
zu machen, unter denen Mediationsanalyse valide Schlussfolgerungen
über direkte und indirekte Effekte zulässt. Im Anschluss daran werden
verschiedene neuere Methoden der Schätzung direkter und indirekter
Effekte mit den traditionellen Verfahren der Differenz- und
Produktmethode verglichen.
Does positive affect mediate the effect of multimorbidity on depression?
────────────────────────────────────────────────────────────────────────
Referent
╌╌╌╌╌╌╌╌
• Ibrahim Demirer, Institut für Medizinsoziologie,
Versorgungsforschung und Rehabilitationswissenschaft
Zusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
Although the association between multimorbidity (MM) and depression
(DP) is well established, the pathways through which MM increases the
risk of DP are often left obscure. Consequently, the identified
associations suffer from unobserved heterogeneity. Moreover, the
association is described as bidirectional and heavily influenced by
intermediate factors. According to Beck (2008), DP is rooted in the
individuals' negative interpretations of experiences. A major
determinant of this interpretation is positive affect (PA). Exposition
to MM tends to influence PA negatively. Thus, PA is an intermediate
factor on the pathway between MM and DP. Mediation analysis is a
common practice for the inspection of intermediate factors. Yet, for
causal analysis, non-parametrical assumptions are required, mostly
defined as sequential ignorability (SI). Translating longitudinal
mediational settings to graphical causal models (DAGs) shows that SI
is often violated due to exposure-induced mediator-outcome
confoundment. In addition, classical approaches fail in parametric
accountment for this type of confounding. As a solution, DAGs are
derived that try to capture the longitudinal process between MM, PA
and DP. The empirical testing is applied by marginal structural
modelling. As a Database, the German Ageing Survey (DEAS) is utilized.
Beck, AT (2008). The evolution of the cognitive model of depression
and its neurobiological correlates. American Journal of Psychiatry
165(8):969–977.
Defining and Identifying Discrimination Using DAGs ──────────────────────────────────────────────────
Referent
╌╌╌╌╌╌╌╌
• Sebatian Wenz, GESIS – Leibniz Institute for the Social Sciences.
Kurzzusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
While some broader definitions virtually equate discrimination with
unconditional inequality, some very narrow definitions limit
discrimination to intentional treatment that harms individuals and
results in inequality between groups. My contribution is based on
both the substantive literature on discrimination as causal effect and
the methodological literature on causality and Directed Acyclic Graphs
(DAGs) in particular. I show that DAGs can help in both defining
discrimination as causal effect in a substantively meaningful and
empirically useful way and – once defined – identifying discrimination
using different research designs. Insights from this endeavor
include:
• Defining and identifying discrimination are intertwined processes.
• Virtually all – substantive and methodological – ideas that went
into my definition and the corresponding DAGs are rather old (e.g.,
Rubin 1986); DAGs alone didn't help.
• Discrimination is virtually indistinguishable from unconditional
inequality if conceptualized as total causal effect (e.g., Blank et
al. 2004) of characteristics that are assigned very early in life
and, afterwards, immutable.
• Solutions that use direct effect conceptualizations of
discrimination (e.g., Pearl 2001, 2014) are themselves problematic;
their substantive meaning changes when mediators are changed or
added.
• Ethnic discrimination and social class discrimination are typically
confounded in all research designs unless explicitly addressed.
• Depending on the definition, identifying discrimination becomes
harder or easier using different research designs.
Bringing Research Desing Back In
────────────────────────────────
Referent
╌╌╌╌╌╌╌╌
• Fabian Class, Universität Potsdam, PCQR
Kurzzusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
The choice of variables that are adjusted for in a statistical
analysis is the single most important aspect in x-centered research
designs. The choice of this "`adjustment set"' first and foremost
depends the parameter of interest itself. It is thus impossible to
make an informed choice without clearly defining the parameter of
interest. Secondly, the choice of the adjustment set depends on
assumptions about the causal relations between the covariates (as
opposed to the associations between the covariates and the outcome).
These assumptions should be thus made standout. Thirdly, the choice of
the adjustment set depend on the covariate of interest. It is thus
usually not sensible to interpret more than one coefficient in a
statistical model.
A review of all x-centered research papers published in the European
Sociological Review in 2016 and 2017 (N = 118) shows that the vast
majority of papers use insufficient reasoning for the adjustment
set. Particularly, only a minority of papers clearly define the
parameter of interest and disclose their assumptions about the causal
relations between the covariates. In consequence, a huge number of
papers interpret several coefficients of their models as if they had
the same meaning. We conclude that parts of the ritualized research
design in sociological papers can be described as an immunization
strategy.
The Art of Programming Questionnaires: Zur Umsetzung von Gestaltungsprinzipien für Fragebögen mit surveyAMC ───────────────────────────────────────────────────────────────────────────────────────────────────────────
Referentin
╌╌╌╌╌╌╌╌╌╌
• Claudia Saalbach, Universität Potsdam, PCQR
Zusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
Der Vortrag stellt das Programmpaket SurveyAMC vor, mit dem sich
selbst-administrierte, papierbasierte, maschinenlesbare Fragebögen in
hoher typografischer Qualität nach den wissenschaftlichen Standards
der Fragebogengestaltung (Jenkins & Dillman, 1995) erstellen
lassen. Zudem enthält SurveyAMC Begleitprogramme mit Hilfe derer
sowohl Papier- als auch Online Fragebögen, Codebücher und Dateien zur
Beschriftungvon Datensätzen, Ergebnistabellen und -grafiken
automatisch aus der gleichen Quelldatei generiert werden können. Der
Vortrag zeigt, warum ein hochwertiges visuelles Fragebogendesign für
die Qualität von selbst-administrierten Umfragedaten wichtig ist, wie
dieses mit surveyAMC umgesetzt wird und welche Vorteile die Arbeit mit
einer zentralen Quelldatei haben kann.
Graphical Causal Models for Survey Inference, External Validity, and Transportability ─────────────────────────────────────────────────────────────────────────────────────
Referent
╌╌╌╌╌╌╌╌
• Julian Schüssler, Universität Konstanz
Zusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
We demonstrate the usefulness of graphical causal models to
communicate theoretical assumptions about the collection of survey
data, determine whether typical population parameters of interest to
survey researchers can be recovered from a survey sample, and support
the choice of suitable adjustment strategies. Starting from graphical
representations of prototypical selection scenarios, we provide an
explicit justification for the use of standard weighted regression
estimators, which is missing in the literature. We then further
discuss the semantics of selection bias versus transportability
problems, summarize the recent methodological literature, and discuss
areas for future social science research that can benefit from recent
advances in graph literature in computer science and epidemiology.
Multilevel Analysis with Few Clusters: Improving Likelihood-based Methods to Provide Unbiased Estimates and Accurate Inference | ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Referent
╌╌╌╌╌╌╌╌
• Jan Paul Heisig, Wissenschaftszentrum Berlin für Sozialforschung
(WZB)
Zusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
Quantitative comparative social scientists have long worried about the
performance of multilevel models when the number of upper-level units
is small. Adding to these concerns, an influential Monte Carlo study
by Stegmueller (2013) suggests that standard maximum likelihood
methods yield biased point estimates and severely anti-conservative
inference with few upper-level units. In this paper, we seek to
rectify this negative assessment. First, we show that maximum
likelihood estimators of coefficients are unbiased in linear
multilevel models. The apparent bias in coefficient estimates found by
Stegmueller can be attributed to Monte Carlo Error and a flaw in the
design of his simulation study. Second, we show how inferential
problems can be overcome by using restricted maximum likelihood
estimators for variance parameters and a t-distribution with
appropriate degrees of freedom for statistical inference. Thus,
accurate multilevel analysis is possible within the framework that
most practitioners are familiar with, even if there are only a few
upper-level units
The Roads Not Taken: Graph Theory and Macroeconomic Regimes in Stock-flow Consistent Modeling ─────────────────────────────────────────────────────────────────────────────────────────────
Referenten
╌╌╌╌╌╌╌╌╌╌
• Miguel Carrión Álvarez, Grupo Santander
• Dirk Ehnts, Bard College Berlin
Zusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
Standard presentations of stock-flow consistent modeling use specific
Post Keynesian closures, even though a given stock-flow accounting
structure supports various different economic dynamics. In this paper
we separate the dynamic closure from the accounting constraints and
cast the latter in the language of graph theory. The graph formulation
provides (1) a representation of an economy as a collection of cash
flows on a network and (2) a collection of algebraic techniques to
identify independent versus dependent cash-flow variables and solve
the accounting constraints. The separation into independent and
dependent variables is not unique, and we argue that each such
separation can be interpreted as an institutional structure or policy
regime. Questions about macroeconomic regime change can thus be
addressed within this framework. We illustrate the graph tools
through application of the simple stock-flow consistent model, or “SIM
model,” found in Godley and Lavoie (2007). In this model there are
eight different possible dynamic closures of the same underlying
accounting structure. We classify the possible closures and discuss
three of them in detail: the “standard” Godley–Lavoie closure, where
government spending is the key policy lever; an “austerity” regime,
where government spending adjusts to taxes that depend on private
sector decisions; and a “colonial” regime, which is driven by
taxation.
Ökonomische Selektivität im politischen Engagement ──────────────────────────────────────────────────
Referenten
╌╌╌╌╌╌╌╌╌╌
• Juliana Witkowski, Ruhr-Universität Bochum, Fakultät für
Sozialwissenschaft, Sektion sozialwissenschaftliche Methoden und
Statistik,
• Simon Ress, Ruhr-Universität Bochum, Fakultät für
Sozialwissenschaft, Sektion sozialwissenschaftliche Methoden und
Statistik,
Zusammenfassung
╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌
In dem geplanten Vortrag werden die Analysemethode und -ergebnisse des
Einflusses ökonomischer Faktoren auf die Bereitschaft, zum politischen
Engagement, vorgestellt. Mit bürgerschaftlichem Engagement im
Allgemeinen, zu dem auch politische Partizipation zählt, wird die
Hoffnung verbunden, verschiedene gesellschaftliche Gruppen zu
integrieren. Studien wiesen in der Vergangenheit darauf hin, dass sich
die Partizipation in der Zivilgesellschaft zwar im Durchschnitt erhöht
hat, bestimmte Formen jedoch rückläufig sind und sich auf bestimmte
soziale Gruppen konzentrieren (Tesch-Römer et al. 2017; Bödeker
2012). Insbesondere im Bereich von politischem Engagement ist zu
berücksichtigen, dass neben der sozialen Integration auch die
Repräsentation einer breiten Masse der Bevölkerung in der Politik
leidet, wenn einige soziale Gruppen unterproportional vertreten sind.
Anhand der Daten des SOEPs wird geschätzt, wie das Einkommen auf die
Bereitschaft und das Ausmaß, sich in Bürgerinitiativen, politischen
Organisationen oder auf Ebene der Kommunalpolitik zu engagieren,
wirkt. Dabei wird sowohl temporale als auch gruppenspezifische
Heterogenität des Effekts zugelassen. Mit Hilfe von Directed Acycling
Graphs wird gemäß des Potential Outcome Models (Rubin 2005) eine
geeignete Auswahl von Confounder-Variablen aus dem bisherigen
Forschungsstand abgeleitet, sodass Gültigkeit der Conditional
Independence Assumption angenommen und ein kausaler Effekt geschätzt
werden kann. Modelliert wird die Schätzung mittels
Difference-in-Differences Propensity Score Matching.
Bödeker, Sebastian (2012). Das uneingelöste Versprechen der
Demokratie. Zum Verhältnis von sozialer Ungleichheit und politischer
Partizipation in der repräsentativen Demokratie. in:
Vorgänge. Zeitschrift für Bürgerrechte und Gesellschaftspolitik,
51(3)43-52.
Rubin, Donald B. (2005). Causal Inference Using Potential
Outcomes. Design, Modeling, Decisions. Journal of the American
Statistical Association, (469)
Tesch-Römer, Clemens; Simonson, Julia; Vogel, Claudia; Ziegelmann,
Jochen P. (2017). Ergebnisse des Deutschen Freiwilligensurveys 2014:
Implikationen für die Engagementpolitik, in: Simonson, Julia; Vogel,
Claudia; Tesch-Römer, Clemens (Hrsg.), Freiwilliges Engagement in
Deutschland. Empirische Studien zum bürgerschaftlichen Engagement.
Wiesbaden: Springer.
Workshop: Causal Graphs Basics
══════════════════════════════
Ort und Zeit
────────────
━━━━━━━━━━━━━━━━━━━━━━━━━━━
6. März 2020, 12:00–14:00
Universität Potsdam
Campus Griebnitzsee
Gebäude 6
Raum S21
━━━━━━━━━━━━━━━━━━━━━━━━━━━
Beschreibung
────────────
The workshop discusses causal graphs as a fundamental modelling
framework for empirical researchers in the social sciences. Questions
addressed in interaction with participants include drawing and
interpreting a graph, the connection to path diagrams and structural
equations, understanding /d/-separation (with an application to
instrumental variables), the nature of post-treatment bias, and
simulating data from graphs.
Referent
────────
Julian Schüssler ist PhD Student an der [Graduate School of Decision
Sciences] und Mitglied im [Center for Data and Methods] der
Universität Konstanz. Seine Dissertation befasst sich mit neuen
Anwendungen von kausalen Graphen und /potential outcomes/ auf
Instrumentalvariablen, Surveyforschung und kausalen Mechanismen.
Julian Schüsslers Seminar zu [Causal Graphs] erhielt den /Causality in
Statistics Education Award 2018/ der American Statistical Association.
[Graduate School of Decision Sciences]
https://www.gsds.uni-konstanz.de/
[Center for Data and Methods]
https://www.polver.uni-konstanz.de/en/cdm/
[Causal Graphs] http://www.julianschuessler.net/graphs2018.html
Liebe Kolleginnen und Kollegen, Colleagues,
für eine Weiterleitung an ggf. infrage kommende Kolleg/innen wären wir
dankbar!
Thanks!
Betina Hollstein & Mario L. Small
The University of Bremen, U Bremen Excellence Chair Prof. Mario L. Small
PhD/ Research Group "Large-Scale Data and Field Research in the Study of
Social Networks" at the SOCIUM Research Center on Inequality and Social
Policy, invites applications for the following position
Post-Doctoral Researcher in Computational Social Sciences
German pay-scale EG 13 TV-L,
full time and limited until December 31, 2023
Start of contract: April 1, 2020 or earlier.
The University of Bremen, a mid-sized university with 320 professors, 19.500
students and a full-spectrum of academic disciplines is one of Europes
leading research universities and maintains close cooperation with
international universities and non-university research institutions in the
region. The promotion of young researchers is a core element of Bremen's
research strategy.
The 'U Bremen Excellence Chairs' program is a new initiative at University
of Bremen since 2019. It enables internationally outstanding researchers to
establish their own working groups at the university and to integrate them
into a network of excellent research institutions worldwide in their
respective disciplines. Mario L. Small's research group will study
Large-Scale Data and Field Research in the Study of Social Networks. One
major promise of big data was the ability to understand how social
networks emerge, operate, and shape human behavior on a much larger scale
than previously possible. However, as wide-eyed enthusiasm has given way to
sober analysis, researchers and the public have become increasingly aware of
the limitations of such data. This project will examine the extent to which
field-based research (interview and survey research) can help address the
limits of computationally intensive analysis of large-scale administrative
data. Focusing on problems such as boundary specification, locality of
interaction, algorithmic confounding, and misinterpretation of meaning, we
will examine the extent to which bringing field research to bear on the
analysis of large-scale administrative data can help improve our
understanding of the relationship between networks and social inequality.
The postdoctoral researcher will help design, execute, and write the results
of research bringing field methods to bear on large-scale, administrative
data analysis.
Requirements:
* expertise in social science computational methods and the management
of large datasets, either expertise or demonstrated familiarity with
research in social networks, and a completed Ph.D. degree in either
sociology or a related social science.
* demonstrated evidence of initiative, independence, drive,
efficiency, productivity, the ability to work in groups, and a commitment to
high quality social science research.
* high level of proficiency in English (including demonstrated
academic writing skills), proficiency in German is welcome, but not
required.
* experience with working in international projects, organizing
academic events, and developing project proposals, preferably shown through
employment, fellowship, or extended research stay at an international
research institution within the past five years, is preferred but not
required.
* strong interest in developing connections with other researchers;
experience gained at other national/ international research institutions is
welcome.
The researcher will also oversee a Ph.D. student at U Bremen who will
conduct qualitative research. The postdoctoral researcher need not have
direct expertise in qualitative interview methods or in survey methods, but
some exposure to both methods is preferred.
Salary and benefits are linked to the German employee scale TVL13 (100%).
International candidates are highly encouraged to apply.
The review process will begin on February 25, 2020. Applications and
inquiries should be sent electronically as pdf-attachment by February 24,
2020 with the reference number A386/19 to
<mailto:socium-bewerbungen@uni-bremen.de> socium-bewerbungen(a)uni-bremen.de
Applications will be reviewed until the position is filled.
Please note that the application should be submitted in English and that we
can only accept it if it includes all required documents as a single PDF
file: CV (with publication record), academic certificates, a sample chapter
of your PhD thesis or other written paper, and a cover letter describing
your background, interests, and motivation for applying. The application
letter should also contain information about the data set(s) you have worked
with.
The University of Bremen has received a number of awards for its gender and
diversity policies and is particularly aiming to increase the number of
female researchers. Applications from female candidates, international
applications and applications of academics with a migration background are
explicitly welcome. Disabled persons with the same professional and personal
qualifications will be given preference.
For further information please contact Prof. Mario L. Small, PhD (
<mailto:mario_small@harvard.edu> mario_small(a)harvard.edu) or Prof. Dr.
Betina Hollstein ( <mailto:betina.hollstein@uni-bremen.de>
betina.hollstein(a)uni-bremen.de)
Prof. Dr. Betina Hollstein
University of Bremen
SOCIUM - Research Center on Inequality and Social Policy, Head
Mary-Somerville-Str. 9, R. 9.3090
D - 28359 Bremen
tel +49 (0)421-218-58512 / 218-58638 (secr. Ms. Neumann)
e-mail: betina.hollstein(a)uni-bremen.de
<mailto:betina.hollstein@uni-bremen.de>
http://www.socium.uni-bremen.de/about-the-socium/members/betina-hollstein/en
/?
QUALISERVICE Research Data Center for Qualitative Social Science Research
Data, Head
https://www.qualiservice.org/de/ - relaunch!
Recent publications:
<https://www.socium.uni-bremen.de/ueber-das-socium/mitglieder/betina-hollste
in/publikationen/?publ=8749> What autobiographical narratives tell us about
the life course. Contributions of qualitative sequential analytical methods,
in: Advances in Life Course Research, online-first (18.12.2018),
<http://dx.doi.org/10.1016/j.alcr.2018.10.001>
doi:10.1016/j.alcr.2018.10.001
Collecting egocentric network data with visual tools. A comparative study,
in: Network Science, forthcoming (with T. Töpfer & J. Pfeffer)
Dear Colleagues,
***We apologize for cross-posting***
We would like to invite researchers to submit abstracts to a session devoted
to Contemporary issues in longitudinal and panel data analysis at The
International Conference on Social Science Methodology (RC33) September 8th
11th, 2020, Nicosia, Cyprus.
Deadline for the submission of abstracts is 31st January 2020. An abstract
should contain max. 300 words.
Session details: Contemporary issues in longitudinal and panel data
analysis
Longitudinal and panel data are used to study change within the units of
interest (e.g., persons, groups, organizations, or countries). However,
researchers may face several difficulties when working with panel data. For
example, the identification of within-unit effects and its separation from
stable variation between units as well as the correct specification of the
direction of effects is a central issue for causal modeling. However, in
many cases the issue of reversed effects is neglected. Furthermore, a
prerequisite for valid analyses and comparisons of substantive constructs
across time is that the measurements are actually comparable (i.e.,
equivalent) across occasions. However, often this prerequisite is only
assumed but not tested.
The methodological and statistical literature offers powerful tools to
specify panel models that separate within- and between-unit variability and
account for reciprocal causation (e.g., structural equation models with
fixed effects) and to test the equivalence of measurements across time
(longitudinal confirmatory factor analysis). This session aims at presenting
studies that address particular analytical and conceptual problems
associated with the broad issues outlined above. For example:
· Causal modeling of panel data
§ Sequential exogeneity and reciprocal causality
§ Lagged dependent and lagged independent variables
§ Flexible specification and comparison/test of alternative models
§ ML/WLS estimation and handling of missing data
· Measurement equivalence in panel data
§ How to deal with nonequivalence? Are small deviations tolerable?
o Bayesian approximate methods, alignment method
o Partial measurement equivalence
§ Sources of longitudinal measurement nonequivalence?
o Systematic panel attrition
o Life-course events
o Developmental processes
We welcome presentations that apply one of the methods mentioned above (or
associated ones) and approach one of the issues related to panel data either
using empirical data (1), and/or taking a methodological approach for
example by using Monte-Carlo simulations.
Best regards
Daniel Seddig & Heinz Leitgöb
--
PD Dr. Daniel Seddig
University of Cologne
Institute of Sociology and Social Psychology (ISS)
dseddig(a)uni-koeln.de <mailto:dseddig@uni-koeln.de>
<http://www.iss-wiso.uni-koeln.de/en/institute/staff/s/dr-daniel-seddig/>
http://www.iss-wiso.uni-koeln.de/en/institute/staff/s/dr-daniel-seddig/
Dear Colleagues,
we would like to remind you of the approaching deadline (one week left)
for abstract submission for the RC33 Conference 2020 in Nicosia, Cyprus
and draw your attention to our session: What About Causal Mechanisms?
Analytical Approaches Using Longitudinal Data in Life Course Research
The International Conference on Social Science Methodology (RC33):
8th-11th September 2020 in Nicosia, Cyprus
http://cyprusconferences.org/rc33/
Session: What About Causal Mechanisms? Analytical Approaches Using
Longitudinal Data in Life Course Research
http://cyprusconferences.org/rc33/submission/
Deadline for Abstracts: 31st January 2020, abstract (max. 300 words)
Session details:
Research questions that motivate the great majority of life course
studies are longitudinal and causal in nature. After several decades of
research that produced numerous cross-sectional findings, the need for
studies aiming at disentangling causal effects from non-causal
associations, as well as mechanisms from confounding factors is becoming
increasingly recognized. Following recent developments in causal
theory, new opportunities for innovative life course research are being
generated by the increasing availability of complex panel data with
individuals observed for several years, belonging to different birth
cohorts and socio-economic contexts, affected by period effects, and
being nested in multiple structures (e.g., couples, households,
families, social networks, school classes, schools, countries). Going
beyond the estimation of the gross (causal) effect, researchers are
increasingly interested in identifying and examining the intervening
mechanisms. However, given the complexity of panel data, this could be
very challenging. The purpose of our
session is to meet challenges with regard to (causal) mediation analysis
using panel data (e.g., within the framework of fixed-effects models,
growth curves, DAGs, multilevel longitudinal models, SEM, event history
models). We invite submissions examining and testing mediating
mechanisms, moderated mediation or applying effect decomposition in
life-course related longitudinal studies based on either regression or
SEM framework. This could be studies using the age-period-cohort
specification, multiple-cohort design or multilevel design.
Substantively, we are particularly interested in research on social
inequalities and/or similar topics.
Best wishes and apologies for cross-posting,
Katharina Loter & Oliver Arránz Becker
Martin-Luther-University Halle-Wittenberg
11. Symposium der Deutschen Arbeitsgemeinschaft Statistik (DAGStat)
Donnerstag, 26. März 2020, 18.00 Uhr, Urania Berlin, Raum Edison
An der Urania 17, 10787 Berlin
Künstliche Intelligenz in der Medizin:
Aufbruch in eine neue Ära oder leeres Versprechen?
https://www.dagstat.de/aktivitaeten/symposium/ka14nstliche-intelligenz/
Wir laden Sie ein, sich über das Thema zu informieren und mit Fachleuten aus Statistik, Medizin, Wirtschaft und Politik den aktuellen Stand zu diskutieren!
Liebe Kolleginnen und Kollegen,
ich möchte Sie gerne auf die folgende Stellenausschreibung im Bundesinstitut für Berufsbildung (BIBB) in Bonn aufmerksam machen.
Wir haben eine Wissenschaftliche Mitarbeiter/innen-Stelle (E14, 100 %) in einem BMBF-geförderten Drittmittelprojekt zum Thema „Polarisierung 4.0 – Fachkräftequalifikationen und Fachkräftebedarf in der digitalisierten Arbeit von morgen“ zu besetzen.
Die Stelle richtet sich an promovierte Wissenschaftler/innen bzw. Wissenschaftler/innen kurz vor Abschluss der Promotion oder mit vergleichbarer Berufserfahrung in der Forschung.
Der Ausschreibungstext findet sich hier: https://www.bibb.de/de/106154.php
Die Bewerbungsfrist endet am 07.02.2020.
Weitere Informationen zum Projektkontext sind hier zu finden: https://www.bibb.de/de/94793.php
Wir freuen uns auf aussagekräftigte Bewerbungen und wären dankbar, wenn Sie/ ihr die Ausschreibung auch an geeignete Kandidatinnen und Kandidaten weiterleiten würden/ würdet.
Mit bestem Dank und besten Grüßen
Alexandra Mergener
Dr. Alexandra Mergener
____________________________________________________________
Bundesinstitut für Berufsbildung (BIBB)
Wissenschaftliche Mitarbeiterin
Arbeitsbereich 1.2 “ Qualifikation, berufliche Integration und Erwerbstätigkeit“
Federal Institute for Vocational Education and Training (BIBB)
Research Associate
Section 1.2 “Qualifications, Occupational Integration and Employment”
Robert‐Schuman‐Platz 3
D‐53175 Bonn
Fon: +49 228 107 1414
www.bibb.de<http://www.bibb.de/>
Liebe Kolleginnen und Kollegen,
hiermit möchten wir gerne auf den Call für das Special Issue zum Thema
'Vignette Analysis: Methodology and Recent Developments' in der
Zeitschrift /methods, data, analyses/ aufmerksam machen.
Alle Informationen sind weiter unten in der Mail oder unter
https://mda.gesis.org/index.php/mda/announcement/view/6 zu finden!
Wir freuen uns über Einreichungen und die Weiterleitung an interessierte
Kolleg*innen.
Beste Grüße,
Stefanie Eifler, Hermann Dülmer und Lena Verneuer
*********************************************************************************************
*_Call for Papers: Special Issue of /methods, data, analyses/_*
*Vignette Analysis: Methodology and Recent Developments*
*Guest Editors: *
Dr. Lena M. Verneuer (RWTH Aachen University)
Prof. Dr. Stefanie Eifler (Catholic University of Eichstätt-Ingolstadt)
PD Dr. Hermann Dülmer (University of Cologne)
**
Vignettes have become an important tool in social science research to
measure attitudes, normative judgments, and behavioural intentions. In
general, vignettes are fictitious descriptions of a person or situation,
which have to be judged or answered by the respondents. Drawing upon
different disciplinary traditions, the term ‘vignette analysis’ embraces
many different techniques that can be applied within the framework of
non-experimental, quasi-experimental and experimental designs. As
indirect measures used with non-experimental designs, vignettes allow
for emphasizing situational aspects and are seen to solve problems of
obtrusiveness and validity of direct measurements. Within the framework
of the factorial survey approach, vignettes are combined with
experimental designs (full-factorial or fractional). An important
strength of factorial surveys is that by implementing them in surveys
they allow for combining the high internal validity of experiments with
the high external validity of surveys. In contrast to survey designs as
they are typical for simple cross-sectional work, factorial surveys are
full-fledged experiments and for this reason allow a strict test of
causal relationships.
Recently, several methodological challenges related to vignette analyses
were addressed. Depending on theoretical and methodological objectives,
the applied techniques vary in a broad range and lead to different and
sometimes inconsistent results. Due to this diversity, findings on
methodological and substantial issues can have different meanings and
impacts for further research. Among these are for example the
susceptibility of vignettes to social desirability, learning and fatigue
effects and effects of order, variation, wording and presentation mode.
Accordingly, the methodological challenges related to vignette analyses
present a diverse field of research. This special issue chooses one way
of anticipating this and aims at shedding light on the state of affairs
by discussing recent developments and pooling new findings of projects
that try to enrich the discussion. The focus of the call for papers is
explicitly broad, and all contributions dealing with different
analytical strategies or empirical designs that make use of factorial
surveys or other vignette analyses are welcome. Papers matching one of
the following aspects are cordially invited to be part of this special
issue:
-- comparison and discussion of design-related questions regarding
methodological or substantive aspects,
-- recent developments in measuring intentions with vignettes,
- - theoretical ideas for modelling the relationship between
intentions and behaviour for further empirical analyses,
- - cross validation strategies (new approaches, replications),
-- discussion of (dis-)advantages of vignette-designs, validations
strategies and/or measures,
- - issues of data-collection,
- - substantive applications of factorial surveys
**
*Submission procedure and timeline*
If you are interested in submitting a manuscript to the mda special
issue on “Vignette Analysis: Methodology and Recent Developments”,
please upload your manuscript at
https://mda.gesis.org/index.php/mda/about/submissions#onlineSubmissions
following the guidelines of the mda until September 14, 2020. Guidelines
for manuscript preparation can be found in the information for authors:
http://mda.gesis.org/index.php/mda/about/submissions#authorGuidelines
<https://mda.gesis.org/index.php/mda/about/submissions#authorGuidelines>.
When submitting the manuscript, please indicate in the field “Comments
for the Editor” that this is a manuscript for the Special Issue on
“Vignette Analysis: Methodology and Recent Developments”.
Upon submission, manuscripts will be peer-reviewed in accordance with
standard journal practice.
Accepted papers will be published Online First before print. The printed
special issue will appear in October 2021. Queries about this special
issue should be directed to Lena Verneuer at
_lverneuer(a)soziologie.rwth-aachen.de_
*The detailed time schedule is as follows:*
Deadline for paper submission: September 14, 2020
Decision on the full papers:December, 2020
Deadline for the submission of revised manuscripts: February, 2021
Final decision: April, 2021
Online first publications: May – August 2021
Publication of the Full Paper Special Issue: October 2021
********************************************************************************************************
**
**
--
Dr. phil. Lena M. Verneuer
Research Associate
RWTH Aachen
Institute of Sociology
Eilfschornsteinstraße 7
52062 Aachen
Tel: +49 241 80-90369