
Grammar Development
with LFG and XLE

Miriam Butt
University of Konstanz

Course Content

In this course you will learn:

• How to implement a computational grammar
fragment within LFG (Lexical-Functional Grammar).

• Work with the grammar development platform XLE.

• Learn how to integrate finite-state morphological
analyzers into the grammar.

• At the end of the course you should be able to begin
building your own grammar for a language of your
choice.

Course Content

What you will not learn:

• The course will introduce basic concepts and
standard analyses within LFG.

• But the course will spend no time motivating these
analyses or delving into alternatives.

• You will need to take a course on LFG (also available
on-line) or work through the relevant literature
(provided as part of the course).

Course Structure

• See the accompanying file for a detailed course outline.

• Each lesson contains:

1) introduction of the theoretical concepts

2) demonstrations of how to implement the concepts

3) a sample grammar fragment

4) exercises working with the grammar fragment

Course Topics

1. LFG Basics and First Steps in XLE (Walkthrough)

2. Lexical Rules: Passives and other Argument Alternations

3. Adjuncts: Adverbs and Adjectives (also xlerc file)

4. PPs: Adjuncts and Obliques

5. Generation and the Optimality Projection

6. Complements: XCOMP and COMP

7. Long Distance Dependencies and Functional Uncertainty

Course Topics II
8. Pronouns, Empty Nodes and Punctuation

9. Integrating a Finite-State Morphological Analyzer

10. Further Basic XLE Features

• Shuffle Operator (Free Word Order)

• Variables (Relative Clauses)

11. Outlook: Advanced features of XLE

• Integration of Statistical Preferences

• Complex Categories, Transfer System, Restriction Operator

Outline, Lesson 1

1. Motivation: Why Deep Grammars?

2. Demos of possible Applications

3. XLE/LFG Basics

4. The ParGram (Parallel Grammars) Collaboration

Why Deep Grammars?
1. Some Background and Motivation

2. Examples of Applications

• Question-Answering Systems

• Electronic Look-up/Learning Resources

– Computer Assisted Language Learning (CALL)
– Murrinh-Patha English Translation System

• Automatically Annotated Corpora (Treebanks)

Deep Grammars
• Provide detailed morphosyntactic information

- Include detailed information about dependencies
within the clause (subject, object, clausal complements).

- Tense/Aspect/Mood

- Person/Number/Gender

- Modification, Specification (Definite/Indefinite)

• LFG also provides detailed information about constituency
and hierarchical relations of words in the clause.

Deep Grammars
• Simplified Example:

Mary wants to leave.

 subj(want~1,Mary~3)
 comp(want~1,leave~2)
 subj(leave~2,Mary~3)
 tense(leave~2,present)

• Deep Grammars are usually manually constructed.

• Large Multilingual Grammar Development Efforts include:

– LFG (ParGram)
– HPSG (LinGO, Matrix, DELPH-IN)

Applications: Treebanks
• Many Natural Language Processing (NLP) tools depend on

linguistically sophisticated resources.

• One example of such a resource is a so-called treebank.

• A treebank or structure bank is a corpus of sentences
annotated with deep linguistic information.

• Deep grammars can be used to automatically annotate
such a corpus of sentences.

• This also serves to help with language documentation.

Applications: Q&A

• Deep grammars also have potential to be used in
sophisticated Question-Answer (Q&A) systems.

• Examples:

- IBM’s Watson (uses a dependency grammar)

- The PARC Bridge System (led to founding of the
company Powerset)

IBM’s Watson
IBM’s Watson made a spectacular debut playing against
humans on the US game show Jeopardy.

IBM’s Watson

• Check it out on YouTube.

• Read about the design here (and elsewhere):

Ferrucci, David, Eric Brown, Jennifer Chu-Carroll, James Fan,
David Gondek, Aditya A. Kalyanpur, Adam Lally, J. William
Murdock, Eric Nyberg, John Prager, Nico Schlaefer & Chris
Welty. 2012. Building Watson: An overview of the DeepQA
Project. AI Magazine 31(3).

PARC’s BRIDGE Q&A
• Researchers at the Palo Alto Research Center (PARC)

put together a demo to show-case their ideas for a
linguistically sophisticated Q&A system.

• The system includes

- LFG grammars of the type constructed in this course.

- Finite-State Morphological Analyzer

- An Abstract Knowledge Representation System (AKR)

- Integration of lexical semantic information from WordNet and
other lexical resources/ontologies.

PARC’s BRIDGE Q&A
Read about the system here:

Bobrow, Danny G., Cleo Condoravdi, Kyle Richardson,
Richard Waldinger & Amar Das. 2011. Deducing answers to
English questions from structured data. 2011. International
Conference on Intelligent User Interfaces (IUI). Stanford.

Bobrow, Danny G., Robert D. Cheslow, Cleo Condoravdi,
Lauri Karttunen, Tracy H. King, Rowan Nairn, Valeria de Paiva,
Lotti Price & Annie Zaenen. 2007. PARC's Bridge question
answering system. Proceedings of the GEAF (Grammar
Engineering Across Frameworks) 2007 Workshop. Stanford.

PARC’s BRIDGE Q&A

Underlying LFG Grammar
Each sentence is parsed by a
large LFG grammar for
English developed at PARC.

Each parse contains a
constituent structure (c-str).

This shows linear order of
the words, constituency and
the hierarchical organization
of the constituents.

A finite-state morphological analyzer (FSM)
feeds into the grammar.

The functional structure (f-str) provides dependency
and other deep linguistic information.

Semantics (AKR)

• The f-structure provides the input for the semantic
analysis, the Abstract Knowledge Representation (AKR).

• F-structures have been shown to be equivalent to Quasi-
Logical Forms (QLFs) so they already contain a good
approximation of basic semantics.

• The AKRs integrate lexical semantic knowledge from
WordNet and other sources.

• The AKRs of the two sentences are compared to see if
the answer to the question can be judged as correct

PARC’s BRIDGE Q&A

Further Examples

Further Examples

Further Examples

Further Examples

Application: CALL

• The following demo is based on the large English LFG
grammar.

• The grammar was modified

- to parse ungrammatical sentences

- register and communicate the type of ungrammaticality

- generate the grammatical version

Khader, R. 2003. Evaluation of an English LFG-based Grammar as Error
Checker. UMIST MSc Thesis, Manchester.

Generation: CALL
• So far we have seen only the parsing capability of the

grammar.

• But all LFG/XLE grammars can use the grammar to
generate.

• For a given f-structure, the grammar goes through all the
available rules to produce the possible output specified
by the grammar.

• The LFG/XLE grammars can work with underspecified
input – this is what happens in the case with
ungrammatical input.

XLE in the Shell

% xle

XLE loaded from /usr/local/xle/bin/xle.
XLEPATH = /usr/local/xle.
Copyright (c) 1993-2001 by the Xerox Corporation and
Copyright (c) 2002-2009 by the Palo Alto Research Center.
All rights reserved. This software is made available AS IS,
and PARC and the Xerox Corporation make no warranty about
the software, its performance or its conformity to any specification.
XLE version 2.6.4 (built Aug 10, 2009 09:39 -0700)
Type 'help' for more information.
loading /Users/mutt/pargram/call/english-call.lfg...
Grammar has 382 rules with 8736 states, 22764 arcs, and 29349 disjuncts (36235
DNF).

This is what XLE looks like when called up from a
command line:

XLE in the Shell
This is what it looks like when the grammar generates
from an f-structure.

% regenerate "They hope graduate in June."
parsing {They hope graduate in June.}
*2+40 solutions, 0.050 CPU seconds, 0.000MB max mem, 535
subtrees unified

They hope to graduate in June.

regeneration took 0.12 CPU seconds.
%

Paradigms via
Underspecified Generation

• Next is an example in which the grammar has been
asked to generate without any tense/aspect
information specified as part of the input.

• The result is the generation of the entire verbal
paradigm of the language.

% regenerate "John sleeps."
parsing {John sleeps.}
1+5 solutions, 0.020 CPU seconds, 0.000MB max mem, 67 subtrees unified

John
 { { will {have been|be}
 |was
 |{has|had} been
 |is}
 sleeping.
 |will {have slept.|sleep.}
 |{has|had} slept.
 |slept.
 |sleeps.}

regeneration took 0.09 CPU seconds.
%

More CALL Potential
• The following demo is based on work by Melanie Seiss

on the Australian Aboriginal language Murrinh-Patha.

• The system uses:

- the large English LFG grammar

- an LFG grammar and FSM for Murrinh-Patha

- the XLE/XFR transfer system for machine translation

- Perl scripts and a TCL/TK Interface

Seiss, Melanie & Rachel Nordlinger. 2011. An Electronic Dictionary
and Translation System for Murrinh-Patha. Proceedings of the EUROCALL
2011 Conference, University of Nottingham.

Deep Grammars

• Deep Grammars have great potential with respect to
NLP applications.

• Deep Grammars serve as a systematic tool for language
documentation

• Why don’t more people use them?

Disadvantages
n Time consuming and expensive to write

– shallow parsers can be induced automatically from a
training set (but somebody has to construct that first)

n Brittle
– shallow parsers produce something for everything

n Ambiguous
– shallow parsers rank the outputs

n Slow
– shallow parsers are very fast (real time)

Why pay attention now?

n Robustness:
– Integrated Chunk Parsers/Fragment Grammars
– Bad input always results in some (possibly good) output

n Ambiguity:
– Integration of stochastic methods
– Optimality Theory used to rank/pick alternatives

n Speed: getting closer to shallow parsers
n Accuracy and information content:

– far beyond the capabilities of shallow parsers.

New Generation of Large-Scale Grammars:

XLE at PARC

n Platform for Developing Large-Scale LFG
Grammars

n LFG (Lexical-Functional Grammar)
– Invented in the 1980s
 (Joan Bresnan and Ronald Kaplan)
– Theoretically stable ⇔ Solid Implementation

n XLE is implemented in C, used with emacs, tcl/tk
n XLE includes a parser, generator and transfer (XFR)

component.

XLE at PARC

n Platform for Developing Large-Scale LFG
Grammars

n LFG (Lexical-Functional Grammar)
– Invented in the 1980s
 (Joan Bresnan and Ronald Kaplan)
– Theoretically stable ⇔ Solid Implementation

n XLE is implemented in C, used with emacs, tcl/tk
n XLE includes a parser, generator and transfer (XFR)

component.
n Extensive on-line documentation

Background Literature

n Bresnan, Joan & Ron Kaplan. 1982. The Mental
Representation of Grammatical Relations. MIT Press.

n Bresnan, Joan. 2001. Lexical-Functional Syntax.
Blackwell.

n Dalrymple, Mary. 2001. Lexical-Functional Grammar.
Academic Press.

n Butt, Miriam, Tracy Holloway King, Frédérique Segond &
María-Eugenia Niño. 1999. The Grammar Writer’s
Cookbook. CSLI Publications.

XLE/LFG and ParGram

n XLE has been used to develop a number of
grammars for very different languages as part
of the ParGram (Parallel Grammar)
collaborative effort.

n (see websites, ParGram Wiki for detailed
information)

The Parallel in ParGram
n Analyze languages to a degree of abstraction that

reflects the common underlying structure (i.e.,
identify the subject, the object, the tense, mood,
etc.).

n Even at this level, there is usually more than one
way to analyze a construction.
– The same theoretical analysis may have different

possible implementations.

– ParGram agrees on common analyses and
implementations (via regular meetings and a feature
committee).

The Parallel in ParGram

n Analyses at the level of c-structure are allowed to differ
(variance across languages)

n Analyses at f-structure are held as parallel as possible
across languages (crosslinguistic invariance).

n Theoretical Advantage: This models the idea of
universal principles underlying language structure.

n Applicational Advantage: machine translation is made
easier; applications are more easily adapted to new
languages.

ParGram Languages (so far)
n Arabic, Chinese, Danish, English, French, Georgian,

German, Hungarian, Irish Gaelic, Indonesian,
Japanese, Malagasy, Murrihn-Patha, Norwegian,
Polish, Setswana, Tigrinya, Turkish, Urdu, Welsh,
Wolof

n Loose organization: no common deliverables, but
common interests.

n Recent Multilingual Effort: the ParGramBank
n Many grammars are available via the INESS website.

Sebastian Sulger, Miriam Butt, Tracy Holloway King, Paul Meurer, Tibor Laczkó,
György Rákosi, Cheikh Bamba Dione, Helge Dyvik, Victoria Rosén, Koenraad De
Smedt, Agnieszka Patejuk, Özlem Çetinoğlu, I Wayan Arka and Meladel Mistica:
ParGramBank: The ParGram Parallel Treebank. Proceedings of ACL 2013 (Long
Papers), Sofia, Bulgaria. Association for Computational Linguistics.

Getting Started with XLE

• This concludes today’s lesson.

• As the practical part of this lesson, you should now:

1. Install XLE so that you can use it for the exercises in the course.

2. Go to the INESS website where many of the ParGram grammars
are available and experiment with the grammars and the
representations.

3. The English LFG grammar is particularly large and robust.

•Detailed information and all the necessary links are
provided separately in the exercise file for the lesson.

