Grammar Development
with LFG and XLE

Miriam Butt
University of Konstanz

Course Content

In this course you will learn:

® How to implement a computational grammar
fragment within LFG (Lexical-Functional Grammar).

® Work with the grammar development platform XLE.

® | earn how to integrate finite-state morphological
analyzers into the grammar.

® At the end of the course you should be able to begin
building your own grammar for a language of your
choice.

Course Content

What you will not learn:

® The course will introduce basic concepts and
standard analyses within LFG.

® But the course will spend no time motivating these
analyses or delving into alternatives.

® You will need to take a course on LFG (also available
on-line) or work through the relevant literature
(provided as part of the course).

Course Structure

® See the accompanying file for a detailed course outline.
® Each lesson contains:
|) introduction of the theoretical concepts
2) demonstrations of how to implement the concepts
3) a sample grammar fragment

4) exercises working with the grammar fragment

Course Topics

|. LFG Basics and First Steps in XLE (Walkthrough)

2. Lexical Rules: Passives and other Argument Alternations
3. Adjuncts: Adverbs and Adjectives (also xlerc file)

4. PPs: Adjuncts and Obliques

5. Generation and the Optimality Projection

6. Complements: XCOMP and COMP

/. Long Distance Dependencies and Functional Uncertainty

Course Topics |l

8. Pronouns, Empty Nodes and Punctuation

9. Integrating a Finite-State Morphological Analyzer

| 0. Further Basic XLE Features

Shuffle Operator (Free Word Order)

Variables (Relative Clauses)

| |. Outlook: Advanced features of XLE

Integration of Statistical Preferences

Complex Categories, Transfer System, Restriction Operator

Outline, Lesson |

|. Motivation: Why Deep Grammars!?
2. Demos of possible Applications

3. XLE/LFG Basics

4. The ParGram (Parallel Grammars) Collaboration

Why Deep Grammars!?

|. Some Background and Motivation

2. Examples of Applications
* Question-Answering Systems
* Electronic Look-up/Learning Resources

— Computer Assisted Language Learning (CALL)
— Murrinh-Patha English Translation System

e Automatically Annotated Corpora (Treebanks)

Deep Grammars

* Provide detailed morphosyntactic information

- Include detailed information about dependencies
within the clause (subject, object, clausal complements).

- Tense/Aspect/Mood
- Person/Number/Gender
- Modification, Specification (Definite/Indefinite)

* LFG also provides detailed information about constituency
and hierarchical relations of words in the clause.

Deep Grammars

e Simplified Example:
Mary wants to leave.

subj(want~1,Mary~3)
comp(want~1,leave~2)
subj(leave~2,Mary~3)
tense(leave~2,present)

* Deep Grammars are usually manually constructed.

e Large Multilingual Grammar Development Efforts include:

— LFG (ParGram)
— HPSG (LinGO, Matrix, DELPH-IN)

Applications: Treebanks

e Many Natural Language Processing (NLP) tools depend on
linguistically sophisticated resources.

* One example of such a resource is a so-called treebank.

* A treebank or structure bank is a corpus of sentences
annotated with deep linguistic information.

* Deep grammars can be used to automatically annotate
such a corpus of sentences.

* This also serves to help with language documentation.

Applications: Q&A

* Deep grammars also have potential to be used in
sophisticated Question-Answer (Q&A) systems.

e Examples:

- IBM’s Watson (uses a dependency grammar)

- The PARC Bridge System (led to founding of the
company Powerset)

IBM’s Watson

IBM’s Watson made a spectacular debut playing against
humans on the US game show |eopardy.

e j
——— e

1 $300,000 [&

IBM’s Watson

 Check it out on YouTube.
 Read about the design here (and elsewhere):

Ferrucci, David, Eric Brown, Jennifer Chu-Carroll, James Fan,
David Gondek, Aditya A. Kalyanpur, Adam Lally, J. William
Murdock, Eric Nyberg, John Prager, Nico Schlaefer & Chris

Welty. 2012. Building Watson: An overview of the DeepQA
Project. Al Magazine 31(3).

PARC’s BRIDGE Q&A

Researchers at the Palo Alto Research Center (PARC)
put together a demo to show-case their ideas for a
linguistically sophisticated Q&A system.

The system includes
LFG grammars of the type constructed in this course.
Finite-State Morphological Analyzer
An Abstract Knowledge Representation System (AKR)

Integration of lexical semantic information from WordNet and
other lexical resources/ontologies.

PARC’s BRIDGE Q&A

Read about the system here:

Bobrow, Danny G., Cleo Condoravdi, Kyle Richardson,
Richard Waldinger & Amar Das. 201 |. Deducing answers to
English questions from structured data. 201 I. International
Conference on Intelligent User Interfaces (IUl). Stanford.

Bobrow, Danny G., Robert D. Cheslow, Cleo Condoravdi,
Lauri Karttunen, Tracy H. King, Rowan Nairn,Valeria de Paiva,
Lotti Price & Annie Zaenen. 2007. PARC's Bridge question
answering system. Proceedings of the GEAF (Grammar
Engineering Across Frameworks) 2007 Workshop. Stanford.

PARC’s BRIDGE Q&A

® OO '\ parc bridge
Display Analyses: # single .. packed Clear| Exit| Help
Passage | A man vanished last Saturday. A
y

|~
Syntax |)AKRO | AKR |

Question |\ Did a person disappear?]

Pl | =

Syntax | AKRO | AKR |

Answer || YES: [person=man,disappear=vanish]

Underlylng LFG Grammar

kill | prev | next | Commands Views
"A man vanished last Saturday."

Cs 1: ROOT

~ a_ NPzero V[fin] ADVPnp

NimeNP

man Adate N

last Saturday

. Each sentence is parsed by a
large LFG grammar for

' English developed at PARC.

Each parse contains a
constituent structure (c-str).

This shows linear order of
the words, constituency and
the hierarchical organization
of the constituents.

kill| prev| next | Commands Views _(n _|p
K "A man vanished last Saturday. "

cs 1: ROOT

S(fin]

WP ¥Pall[fin]
D NPadj VPv[fin]

T N

N V BASE V _SFX BASE VINS SFX BASE VPERS SFX BASE

vanish +Verh +PastBoth +1235P

last Saturday

A finite-state morphological analyzer (FSM)
feeds into the grammar.

X| 1 valid F-structure for ROOT
kill] prev] next] Commands Views (@ _[IC _In _IS

K lOCk' F-structure #1 o: :*|

"A man vanished last Saturday. "

PRED 'wanish< [44 :man] > 1
PRED 'man']
CHECK [LEX-SOURCE countnoun-lex]

M— ESEM [coreon count]]

SUBJ SYN common
RED 'a'
=EEE FET ET-TYPE indef]]
44|CASE nom, NUM sg, PERS 3]
(PRED '‘weekday (Saturday) ' 1
[PRED 'last' Il
RIIHEE |L174[aTYPE attributive, DEGREE positive],[
pDIUNCT | loppok [LEX-SOURCE morphology]

E [sEM EDME date]]
221[ADV-TYPE sadv, NE-TYPE time_date

CHECK [SUBCAT-FRAME V-SUBJ]

TNS-ASP [MO0D indicative, PERF -_, PROG -_, TENSE past]
108|CLAUSE-TYPE decl, PASSIVE -, VTYPE main

/ [

The functional structure (f-str) provides dependency
and other deep linguistic information.

® OO '\ parc bridge
Display Analyses: 4 single ., packed Clear| Exit| Help
Passage | A man vanished last Saturday. A
| | = £
Syntax | AKRO | AKR |
Question | Did a person disappear?
- |
AKRO | AKR |
Answer IYES: [person=man,disappear=vanish]

O O O \ 1valid tree for ROOT:1620

kill| prev| next| Conmands Views _(n _(p

E "Did a person disappear?"

Cs 1: ROOT

AN

CPint INT-MARK

\ 1 valid F-structure for ROOT

kill| prevl nextl Commands Views _(a _[IC _In _IS

CPyesno [base] 7

AUXdo [fin] S[bgse]
did NP vPall[base]
~ did D NPadj VPv[base]

a_ NPzero V[base]

N disappear

person =

22

K lock| F-structure #1 o: :*|

"Did a person disappear?"

PRED 'disappear< [51:person] >’
RED ‘person'
CHECK [LEX-SOURCE countnoun-lex]

g [SEM [COMMON count]
SYN common

SUBJ

RED ‘a
SEEE FET ET-TYPE indef]]
S1|CASE nom, NUM sg, PERS 3
CHECK [SUBCAT-FRAME V-SUEJ]

CLAUSE-TYPE int, PASSIVE -, VIYPE main

TNS-ASP [MO0D indicatiwve, PERF -_, PROG -_, TENSE past]

] .

Semantics (AKR)

* The f-structure provides the input for the semantic
analysis, the Abstract Knowledge Representation (AKR).

* F-structures have been shown to be equivalent to Quasi-
Logical Forms (QLFs) so they already contain a good
approximation of basic semantics.

* The AKRs integrate lexical semantic knowledge from
WordNet and other sources.

* The AKRs of the two sentences are compared to see if
the answer to the question can be judged as correct

kill |

. passage akr0

| A man vanished last Saturday.

Conceptual Structure:

subconcept{weekday{Saturday):21,[time_period-1])
subconcept{last:16,[last{a)1,last-2,concluding-1,final-2,last-5,last-6,final-3,last-8,last-9])
subconcept{date:weekday{Saturday):21,[Saturday-1])
role(subsective,weekday{Saturday):21,last:16)

role(degree,last:16,nor

subconcept(vanish:?anish—2,ﬂy—8,vanish—4,vanish—5])

role{Theme,vanish:7, mame
subconcept{man:3,[man-1,serviceman-1,man-3,homo-2,man-5,man-6,man-7,valet-1,Man-9,man-10,world-8]
role{cardinality_restriction,man:3,sq)

Contextual Structure:

context(t)

top_context(t)
instantiable{date:weekday{Saturday):21.t)
instantiable{man:3,t)
instantiable{vanish:7.,t)
instantiable{weekday(Saturday):21,t)

Temporal Structure:

temporalRel{startsAfterEndingOf,Now,vanish:7)
temporalRel{temporallySubsumes,date:weekday(Saturday):21,vanish:7)

£

X| question akr0

kill |

Al

Did a person disappear?

Conceptual Structure:
subconcept{disappear:1 ‘ anish-2,vanish-4,melt-6])
role(Theme,disappear:14,persom:

subconcept{person:7,[person-1,person-2,person-3])
role(cardinality restriction,person:7,sq)

Contextual Structure:
context(t)
context{ct disappear:14))
top _context{t)
context_relation(t,ctx{disappear:14).interrogative)
instantiable{disappear:14,ct{disappear:14))
instantiable(person:7,.ctqdisappear:14))

Temporal Structure:
temporalRel(startsAfterEndingOf,Now,disappear:14)

V= [,

PARC’s BRIDGE Q&A

® OO '\ parc bridge
Display Analyses: # single .. packed Clear| Exit| Help
Passage | A man vanished last Saturday. A
) = b4

Syntax | AKRO | AKR |

Question |\ Did a person disappear?]

Pl | =

Syntax | AKRO | AKR |

Answer || YES: [person=man,disappear=vanish]

Further Examples

N\ parc bridge
Display Analyses: 4 single . packed Clear | Exit| Help

Passage |The president believes that Iran has some uranium. A
| P ¥

Syntax | AKRO | AKR |

Question | Does Iran have uranium?

| |~
Syntax | AKRO | AKR |

Answer || UNKNOWN

Further Examples

\. parc bridge
Display Analyses: 4 single . packed Clear| Exit| Help

Passage The president knows that Iran has some uranium. A
) PV

Syntax | AKRO | AKR |

Question | Does Iran have uranium?

) | =
Syntax | AKRO | AKR |

Answer | YES: [cardinality=some(sg)]

Further Examples

\. parc bridge
Display Analyses: 4 single .. packed Clear| Exit| Help

Passage | Sandy knows that Kim is not coming home. Al
| | B4

Syntax | AKRO | AKR |

Question ||s Kim coming home?

) | =
Syntax | AKRO | AKR |

Answer ||NO

Further Examples

N\ parc bridge
Display Analyses: @ single . packed Clear| Exit| Help

Passage The destruction of Carthage occurred in 149 BC. Al
) = £

Syntax | AKRO | AKR |

Question |\Was Carthage destroyed?

) | =
Syntax | AKRO | AKR |

Answer | YES

Application: CALL

* The following demo is based on the large English LFG
grammar.

e The grammar was modified
- to parse ungrammatical sentences
- register and communicate the type of ungrammaticality

- generate the grammatical version

Khader; R. 2003. Evaluation of an English LFG-based Grammar as Error
Checker. UMIST MSc Thesis, Manchester.

ki11| prevl next| Comm

PRED

SUBJ

ZCOMP

\ 1 valid F-structure for ROOT

ands Vi

E lock| F-structure #1C{UNGRAMMATICAL)

"Sandy very pretty and clewver."

'he<[96] > [1: Sandy] '

PRED

NTYPE

58

ADJUNCT {38 RED ‘'very' e]l

COORD +

'Sandy'

ESEM PROPER [PROPER-TYPE name]]]

SYN proper

PRED ‘'pretty<[l:Sandy]>'

SUBJ [1:Sandy]

BTYPE predicative, DEGREE positiwve|

i [PRED 'clewver<[l:Sandy]>'
SUBJ [1:Sandy]

BTYPE predicative, DEGREE positive

113Kks ([S8:pretty])

EGREE positive||

L4

CASE nom, GEND-SEM male, HUMAN +, NUM sgq, PERS 3

—

_, COORD-FORM and, COORD-LEVEL A

indicative, PERF -_, PROG -_, TENSE pres|

-, STMT-TYPE decl, VIYPE copular

|

\ 1 valid F-structure for ROOT

killl prevl nextl Commands Views hn IS
"\ lock| F-structure #1 o::*({UNGRAMMATICAL)

"Those books 1s mine. "

PRED 'be< [117:pro] >[14:book] * 1

RED ‘'book'
. ESEM oo count]]

SYN common

RED 'that'
ZEEE FET EIXIS distal, DET-TYPE demon]]

14[cASE nom, NUM pl, PERS 3
RED 'pro< [14 :book] >

E [NSYN pronoun]

SUBJ
SUBJ [14:book]
RXCOMP
SPEC 0SS
117 sg,

PERS 3, PRON-TYPE null
icative, PERF -_, PROG -_, TENSE pres]

RED ‘'pro'
E WNSYN pronoun]
+, NUM sq, PERS 1, PRON-FORM mine, PRON-TYPE poss

| .-

\ 1 valid F-structure for ROOT

kill| prev| next| Commands Views _| a cC In _IS
'\ lock| F-structure #1 o::*({UNGRAMMATICAL)D

"They hope graduate in June. "

PRED ‘hope< [14:pro], [86:graduate]>’

RED 'pro'
|SUBJ E NSYN pronoun]
14|cASE nom, NUM pl, PERS 3, PRON-FORM they, PRON-TYPE pers
PRED 'graduate< [14:pro], [130:in]>'
SUBJ [14:pro]
PRED 'in<[172:June]>’]
RED 'June' 1
B3 g MSEM [TIME month]
[OBL SYN proper
0 OMP 172[cASE obl, NUM sg, PERS 3|
SEM {loc:
130PTYPE sem]

IE:ECK [INF-TYPE bare]

S-ASP - G_-_
CRAMMATICAL {infinitival-missing-to}
86 PASSIVE -,

TNS-ASP [MOOD indicatiwve, PERF -_, PROG -_, TENSE pres]
45|CLAUSE-TYPE decl, PASSIVE -, STMT-TYPE decl, VTYPE main

Generation: CALL

So far we have seen only the parsing capability of the
grammar.

But all LFG/XLE grammars can use the grammar to
generate.

For a given f-structure, the grammar goes through all the
available rules to produce the possible output specified
by the grammar.

The LFG/XLE grammars can work with underspecified
input — this is what happens in the case with
ungrammatical input.

%\ 1 valid F-structure for ROOT
kill] prev| nextl Commandsl Views _Ja _Ic _In IS

K lock| FP-strued ~— — — — — — — — — — — — — — ~ LQL)
Resize Window {r>

"They hope grac
o Copy Window
[PRED Print Postscript 1>

Print LFG File

14 Print Prolog File .0N-FORM they, PRON-TYPE pers

Generate from this FS pro], [130:in]>"
;SUBJ |Ié-1:pr0]

PRED 'in<[172:June]>’
RED ‘'June'
g MSEM [TIME month]
|OBL SYN proper
20 OMP 172|cASE obl, NUM sg, PERS 3
SEM <loc}
130pPTYPE sem
[CHECK [INF-TYPE bare]
TNS-ASP PERF -_, PROG -_]
GRAMMATICAL {infinitival-missing-to}
86PASSIVE -, VIYPE main

TNS-ASP [MOOD indicatiwve, PERF -_, PROG -_, TENSE pres]
45|CLAUSE-TYPE decl, PASSIVE -, STMT-TYPE decl, VTYPE main

SUBJ

[0BJ

XLE in the Shell

This is what XLE looks like when called up from a
command line:

% xle

XLE loaded from /usr/local/xle/bin/xle.

XLEPATH = /usr/local/xle.

Copyright (¢) 1993-2001 by the Xerox Corporation and

Copyright (¢) 2002-2009 by the Palo Alto Research Center.

All rights reserved. This software is made available AS IS,

and PARC and the Xerox Corporation make no warranty about

the software, its performance or its conformity to any specification.
XLE version 2.6.4 (built Aug 10, 2009 09:39 -0700)

Type 'help' for more information.

loading /Users/mutt/pargram/call/english-call.lfg...

Grammar has 382 rules with 8736 states, 22764 arcs, and 29349 disjuncts (36235
DNF).

XLE in the Shell

This is what it looks like when the grammar generates
from an f-structure.

% regenerate "They hope graduate in June."
parsing {They hope graduate in June.}
*2+40 solutions, 0.050 CPU seconds, 0.000MB max mem, 535

subtrees unified

(hey hope to graduate in June>

regeneration took 0.12 CPU seconds.
%

Paradigms via
Underspecified Generation

* Next is an example in which the grammar has been
asked to generate without any tense/aspect
information specified as part of the input.

* The result is the generation of the entire verbal
paradigm of the language.

% regenerate "John sleeps."

parsing {John sleeps.}
1+5 solutions, 0.020 CPU seconds, 0.000MB max mem, 67 subtrees unified

John
{ { will {have been|be}

lwas
|{has|had} been

i}
sleeping.
will {have slept.|sleep.}
{has|had} slept.
slept.
sleeps.}

regeneration took 0.09 CPU seconds.
%

More CALL Potential

* The following demo is based on work by Melanie Seiss
on the Australian Aboriginal language Murrinh-Patha.

* The system uses:
- the large English LFG grammar
- an LFG grammar and FSM for Murrinh-Patha
- the XLE/XFR transfer system for machine translation

- Perl scripts and a TCL/TK Interface

Seiss, Melanie & Rachel Nordlinger. 201 1. An Electronic Dictionary
and Translation System for Murrinh-Patha. Proceedings of the EUROCALL
2011 Conference, University of Nottingham.

|

N Murrinh-Patha Resources

Welcome to the Murrinh-Patha Electronic Resources!

This collection of programms helps you to learn and understand
Murrinh-Patha, an Aboriginal Language spoken in the
Northern Territory of Australia.

Learn more about this system and about Murrinh-Patha |

m_; glish to Murrinh-Patha Translation System

%\ English to Murrinh-Patha translator

Which English sentence do you want to translate?

|The girls saw the boys

Translate

Is the subject a group of 2, a small group (ca. 3 -10)
or a bigger group (over ca. 10)?

4 a group of two a small group (ca. 3-10) - a big group (over ca 10)

Clear | Close Window | Exit |

Are they siblings?

What are siblings ? |

X What are siblings?

As siblings are considered:

- your brothers and sisters
- the children of your mother's sisters
- the children of your father's brothers.

Which English sentence do you want to translate?

the girls saw the boys

Translate

Is the subject a group of 2, a small group (ca. 3 -10)
or a bigger group (over ca. 10)?

4% agroup of two +, a small group (ca. 3-10) -, a big group (over ca 10)
Are they siblings?

4 yes -, no What are siblings?

Is the object a group of 2 people, a small group (ca. 3 - 10) of people,
a bigger group (over ca. 10) of people or nonhuman?

~~ agroup oftwo ® a small group -, a big group -, non-human
Are they siblings?

~ Yes 4 no What are siblings ?

Are they male or female or mixed?

~ female / mixed

Clear l Close Window | Exit |

Translation Result:

English: the girls saw the boys
Murrinh-Patha: Kardu ngalarru pubampunkungkarduneme kardu kigay.
Alternative: Kardu ngalarru pubamkangkardu kardu kigay.

Verb only: Pubampunkungkarduneme.

Alternative:

\ More Information

More information for 'kardu ngalarru pubampunkungkarduneme kardu kigay"

Get dictionary entry and examples |

Gt morphological informatioD

Show form with all possible tenses |

Show form with all possible subject numbers |

Show form with all possible object numbers |

Close Window

| More Information

More information for 'kardu ngalarru pubampunkungkarduneme kardu kigay'":

Get dictionary entry and examples |

Get morphological information |

Morphology for kardu ngalarru pubampunkungkarduneme kardu kigay:
kardu Noun Classifier
ngalarru Noun

pubam Classifier 13,
Subject Information: 3. Person dual Sibling (they two Siblings),
Tense: non-Future
punku Direct Object Information: 3 Person dual Sibling (them, two siblings)
ngkardu Lexical stem
neme Object Information: few male non-Sibling (overwrites info)
Subject: few female non-Siblings (overwrites info from classifier)
Subject: few male non-Siblings (overwrites info from classifier)
neme Subject: few male non-Siblings (overwrites info from classifier)
pldunFut3daucDOngkarduLSneme Object Information: few male non-Sibling (overwrites info)
kardu Noun Classifier

kigay Noun

Show form with all possible tenses |

Show form with all possible subject numbers |

Show form with all possible object numbers |

Non-Future:

Past Imperfective:

Future:
Futur Irrealis:
Past Irrealis:

Show form with all possible tenses

Kardu ngalzfru pubampunkungkarduneme ka
Kardu nggllarru pubenkungkardudhaneme kart
Kardu ngglarru pubankungkardununeme kardt
Kardu nga\arru kubankungkardunukunneme k:
Kardu ngalamy pubenkungkardudhaneme k3

Deep Grammars

Deep Grammars have great potential with respect to
NLP applications.

Deep Grammars serve as a systematic tool for language
documentation

Why don’t more people use them!?

Disadvantages

® Time consuming and expensive to write

— shallow parsers can be induced automatically from a
training set (but somebody has to construct that first)

m Brittle
— shallow parsers produce something for everything

® Ambiguous
— shallow parsers rank the outputs

m Slow
— shallow parsers are very fast (real time)

Why pay attention now!

New Generation of Large-Scale Grammars:

®m Robustness:
— Integrated Chunk Parsers/Fragment Grammars
— Bad input always results in some (possibly good) output
B Ambiguity:
— Integration of stochastic methods
— Optimality Theory used to rank/pick alternatives
m Speed: getting closer to shallow parsers
®m Accuracy and information content:
— far beyond the capabilities of shallow parsers.

XLE at PARC

® Platform for Developing Large-Scale LFG
Grammars

® | FG (Lexical-Functional Grammar)
— Invented in the 1980s
(Joan Bresnan and Ronald Kaplan)
— Theoretically stable < Solid Implementation

® XLE is implemented in C, used with emacs, tcl/tk

® XLE includes a parser, generator and transfer (XFR)
component.

XLE at PARC

® Platform for Developing Large-Scale LFG
Grammars

® | FG (Lexical-Functional Grammar)
— Invented in the 1980s
(Joan Bresnan and Ronald Kaplan)
— Theoretically stable < Solid Implementation

® XLE is implemented in C, used with emacs, tcl/tk

® XLE includes a parser, generator and transfer (XFR)
component.

® Extensive on-line documentation

Background Literature

® Bresnan, Joan & Ron Kaplan. 1982. The Mental
Representation of Grammatical Relations. MIT Press.

® Bresnan, Joan. 2001. Lexical-Functional Syntax.
Blackwell.

® Dalrymple, Mary. 2001. Lexical-Functional Grammar.
Academic Press.

® Butt, Miriam, Tracy Holloway King, Frédérique Segond &
Maria-Eugenia Nino. 1999. The Grammar Writer s
Cookbook. CSLI Publications.

XLE/LFG and ParGram

® XLE has been used to develop a number of
grammars for very different languages as part
of the ParGram (Parallel Grammar)
collaborative effort.

® (see websites, ParGram Wiki for detailed
information)

The Parallel in ParGram

® Analyze languages to a degree of abstraction that

reflects the common underlying structure (i.e.,
identify the subject, the object, the tense, mood,

etc.).

® Even at this level, there is usually more than one
way to analyze a construction.

— The same theoretical analysis may have different
possible implementations.

— ParGram agrees on common analyses and
implementations (via regular meetings and a feature

committee).

The Parallel in ParGram

® Analyses at the level of c-structure are allowed to differ
(variance across languages)

® Analyses at f-structure are held as parallel as possible
across languages (crosslinguistic invariance).

® Theoretical Advantage: This models the idea of
universal principles underlying language structure.

= Applicational Advantage: machine translation is made
easier; applications are more easily adapted to new
languages.

ParGram Languages (so far)

® Arabic, Chinese, Danish, English, French, Georgian,
German, Hungarian, Irish Gaelic, Indonesian,
Japanese, Malagasy, Murrihn-Patha, Norwegian,
Polish, Setswana, Tigrinya, Turkish, Urdu, Welsh,
Wolof

B [oose organization: no common deliverables, but
common interests.

® Recent Multilingual Effort: the ParGramBank
® Many grammars are available via the INESS website.

Sebastian Sulger, Miriam Butt, Tracy Holloway King, Paul Meurer, Tibor Laczko,
Gyorgy Réakosi, Cheikh Bamba Dione, Helge Dyvik, Victoria Rosén, Koenraad De
Smedt, Agnieszka Patejuk, Ozlem Cetinoglu, I Wayan Arka and Meladel Mistica:
ParGramBank: The ParGram Parallel Treebank. Proceedings of ACL 2013 (Long
Papers), Sofia, Bulgaria. Association for Computational Linguistics.

Getting Started with XLE

® This concludes today’s lesson.

® As the practical part of this lesson, you should now:
|. Install XLE so that you can use it for the exercises in the course.

2. Go to the INESS website where many of the ParGram grammars
are available and experiment with the grammars and the
representations.

3. The English LFG grammar is particularly large and robust.

® Detailed information and all the necessary links are
provided separately in the exercise file for the lesson.

